(Partially Specified) Secure Channels

Tom Shrimpton
University of Florida

Summer School on Real World Crypto and Privacy (June 14, 2018)

Prologue: Review of AE

Authentlcated Encryption M
~ 2 g

Probabilistic or deterministic AE? Nonce based AE?

What happens if a nonce repeats?

Do | need to support associated data?

What primitives should we build upon?
encryption + MAC? (tweakable) wide-block cipher?

= — —_— sponges? ...

What should happen when decryption fails?
Ceci nest nas une UL Is it safe to provide multiple, descriptive

exceptions/error messages?

Stop all future processing,
or just for this message?

What kind of information can decryption safely leak?
Safe to release plaintext data “early”?

Online encryption/decryption property?
"Atomic” plaintexts/ciphertexts, or stream-based?

(Authenticated encryption != Secure Channel)

A (probabilistic) authenticated encryption Scheme II = (K, £, D)
is a triple of algorithms

Key-generation - samples from a specified key space

algorithm
Encryption % % $
onthm £ 01} {01 ULy O & e
Decryption x %
algorithm D: Kx{0,1}" = {0,1} U{L} M < Dk (C)
Always deterministic
Correctness:

VK € IC,VM € {0,1}* : Pr{cﬁgK(M); C = 1 or Dg(C) :M} —1

(note: logically equivalent to
C# 1 = Dg(C)=M)

Prologue: Review of AE

Privacy: Indistinguishability from random bits (IND$-CPA)

Expwld$ PEA): Oracle O(M)
K&K Vi & Ex (M)
d<{0,1} Y, <& {0, 1}1Y1]
d < A9C) Return Yy
If d = d then Return 1
Return 0

Adviﬁld&Cpa(A) = 2Pr [Expmc1$ PLA) = 1} —1

Authenticity: Integrity of Ciphertexts (INT-CTXT)

(Bellare, Rogaway AC’ 00) (Katz, Yung FSE’ 00) (Bellare, Namprempre AC’00)

Explnt ctxt (A)

K&K

b<{0,1}

b & A (),00)

If ¥ = b then Return 1
Return 0

Oracle O(C):
If b =0 then Return L
Return Dg (C)

AdVil—Illt_CtXt(A) . 2PI’(EXpmt ctxt (A) _ 1) .

1

random

Ex (") O(-) [bitb

To prevent “trivial wins” of the game,
adversary is forbidden to ask C of the right oracle
if C was returned by the left oracle

Working definition of AE secure”:

If encryption scheme II = (K, £, D) is
IND$-CPA secure and INT-CTXT secure then it is “AE secure’.

/ \

ctxts look like
random bitstrings

dishonestly created ctxts
decryptto |

SSH: gKl,Kg (M) — ? (M)HFK2 (M) “Encrypt and MAC”
SSL/TLS: Ex, K, (M) = Ex (M||Fk,(M)) “MAC then Encrypt”
[PSec: EK, K, (M) = Ex (M)||Fk, (gKl (M)) “Encrypt then MAC”

(Bellare, Namprempre AC’ 00)

x @ “Which of EaM, MtE, EtM gives a secure AE scheme, given a
. & :

| 1| secure encryption scheme and a secure MAC?”
"Wk R N2
]

SSH:
SSL/TLS:
[PSec:

gKl,Kg (M) = ? (M)HFK2 (M) “Encrypt and MAC”
Ex, K, (M) = Ex (M||Fk,(M)) “MAC then Encrypt”
EK, K, (M) =&k ()‘ |FK2 (5}{1 (M)) “Encrypt then MAC”

(Bellare, Namprempre AC’ 00)

x

@ “Which of EaM, MtE, EtM gives a secure AE scheme, given a
" 1| secure encryption scheme and a secure MAC?”
] ‘;‘ w:"

EtM

SSH:
SSL/TLS:
[PSec:

gKl,Kg (M) = ? (M)HFK2 (M) “Encrypt and MAC”
Ex, K, (M) = Ex (M||Fk,(M)) “MAC then Encrypt”
EK, K, (M) =&k ()‘ |FK2 (5}{1 (M)) “Encrypt then MAC”

(Bellare, Namprempre AC’ 00)

_ @ “Which of EaM, MtE, EtM gives a secure probabilistic AE
| " 1y scheme, given a secure probabilistic encryption scheme and
W k W

a secure MAC?”

EtM

(We will come back to the more modern viewpoint on AE(AD) in a bit...)

What is a “secure channel”?

What is a “secure channel”? UF

FLORIDA

Intuitively, a secure channel should provide

K K

|

Privacy for the Integrity protection
message M for the transmission

What is a “secure channel”?

Intuitively, a secure channel should provide

K K

e #lﬁ

Privacy for the Integrity protection
message M for the transmission

(INDs$-CPA) \ / (INT-CTXT)

This sounds a lot like authenticated encryption!

Let’s look at a real secure channel specification: TLS v 1.2

Incoming data

l ..

TLS Plaintext Record

|

TLS Ciphertext Record

... l

(To network layer)

Let’s look at a real secure channel: TLS 1.2 record layer

Incoming data

l ..

TLS Plaintext TLS Plaintext TLS Plaintext
Record Record Record
TLS Ciphertext TLS Ciphertext TLS Ciphertext

... l

(To network layer)

“The record layer fragments
information blocks into TLSPlaintext
records carrying data in chunks of
2714 bytes or less.”

Let’s look at a real secure channel: TLS 1.2 record layer

Incoming data

l ..

TLS Compressed TLS Compressed TLS Compressed “All recorgls are co_mpresse_d usi_ng the
Plaintext Record Plaintext Record Plaintext Record compression algorithm defined in the
current session state...”
l (Usually, the compression

algorithm is “no compression”)
TLS Ciphertext TLS Ciphertext TLS Ciphertext

... l

(To network layer)

1. The application may pass in arbitrary length data, but an RFC-compliant
implementation of the TLS secure channel may fragment however it likes,
so long as fragments are at most 2”14 bytes long.

Distribution of SSL/TLS Ciphersuites UF

FLORIDA

Just how does TLS transform (compressed) plaintext records into ciphertexts?

SSL Ciphersuites [last 30 days]

ECDHE_RSA_AES_128 GCM_SHA256

B ECDHE_RSA_AES 256 _GCM_SHA384
ECDHE_ECDSA_AES_128 GCM_SHA256
other

‘ I ECDHE_RSA_AES_256_CBC_SHA384
: I ECDHE_ECDSA_AES_256_GCM_SHA384
unknown-4865
B RSA_AES 256 _CBC_SHA
I RSA_AES_128 GCM_SHA256

4

ECDHE_RSA_AES_256_CBC_SHA
RSA_AES_128 CBC_SHA

Bl ECDHE_RSA_AES_128 CBC_SHA256
RSA_AES_256_GCM_SHA384
ECDHE_RSA_AES_128 CBC_SHA

Majority using AEAD (GCM)

About 12.5% using CBC mode

“The encryption and MAC functions translate [plaintext
data] into a TLSCiphertext... The MAC of the [plaintext data]
also includes a sequence number so that missing, extra, or

repeated messages are detectable.”

- TLS Compressed Plaintext Record

—_ S —

MAC

—\

TLS Compressed Plaintext Record Tag

l
B

- TLS Compressed Plaintext Record

T / "Padding is added to force the length of the

MAC

—\

plaintext to be an integral multiple of the
block cipher's block length. The padding
MAY be any length up to 255 bytes”

TLS Compressed Plaintext Record

Tag

Padding

l

[CBC

TLS v1.2 CBC Encryption

- TLS Compressed Plaintext Record

—_ S —

N4
—

TLS Compressed Plaintext Record Tag Padding

l
B

Note: SQN l
not sent

L/ - Ciphertext

TLS v1.2 CBC Encryption UF

Here’s the

underlying

- TLS Compressed Plaintext Record AE scheme:
MAC-then-

Encode-then-
Encrypt

MAC

—\

TLS Compressed Plaintext Record Tag Padding

Note: SQN v

not sent ,
L/ Ciphertext

TLS v1.2 AEAD Encryption

Nonce

TLS Compressed Plaintext Record

[§_/

'}

AD

AEAD

l

Ciphertext

Whether or not these are sent,
or derived from sender/receiver-side
state is left to the implementation

FLORIDA

“Which of EaM, EtM, MtE gives a secure probabilistic AE
scheme, given a secure probabilistic encryption scheme and
a secure MAC?”

EtM

15 years!

(Namprempre, Rogaway, S. EC’ 14)

“What are all of ways to build an IV-based AEAD scheme
that is secure with nonce IVs, from a secure [V-based
encryption scheme and a secure PRF?”

Interlude: Reconsidering Generic Composition

“E and M” “E and M” “E and M” SIV mode [RS06]
v [M | [A INIIMIIAIINIIMIIAIIJIVIIMIIAI
7 § | | | L | |
FL FL FL FL FL FL FL
IV i v v v Y vV
Ex Ex Ek Ex
scheme scheme scheme scheme
Al i ¥ A2 A\ 1 A3 v A4
c_ | 7] L _C LT] C LT C LT
v L | [Aa Iy L | [Aa |y L | [Aa]|l [| [4]
7 1 i T iR S 1 by e
Fy Fi Fi Fi F; = Fi Fi = Fi
IV A IV \d IV \d nf
Ex Ek Ek Ex
scheme scheme scheme scheme
A5] A6 1 A7 A A8
L ¢ | 7] C LT] C C
“M then E” “M then E”

“E then M”

“E then M”

Back to the main story... UF

FLORIDA

_ TLS Compressed Plaintext Record
\ // ‘.0’

MAC

—\

TLS Compressed Plaintext Record tag padding

!
| cC |
v
- Ciphertext
SQN
not sent

Nonce TLS Compressed Plaintext Record

M
AEAD

SQN may)

not sent / ' \ |

1. The application may pass in arbitrary length data, but an RFC-compliant
implementation of the TLS secure channel may fragment however it likes, so
long as fragments are at most 214 bytes long.

2. TLS records are embellished with a sequence number (SQN), to protect
against out-of-order delivery (includes replay, fragment dropping, etc.)

If encryption is CBC mode, the SQN is not sent.
If encryption is AEAD the SQN may or may not be sent.

AE != secure channel UF

Apparently, a secure channel should provide:

Privacy for messages v AE
Integrity protection for the transmission v/ AE
Protection against out-of-order delivery X AE

If the SQN is not sent, sender and receiver
need to be stateful for proper modeling.

Authenticity when decryption is stateful

[Bellare, Kohno,

Namprempre '04] First to capture security against replay, out of order delivery, etc.

Experiment ExpZgsfetxt(4 . 1)
K&K o Channel is initially “in sync”
t<—0;7«<0; phase — 0

ctxt

Reply to Ex (M) queries as follows:

. . R
Sequencing of / t—1i+1; C;— Ex(Mp)

sent ciphertexts Astetxt <= Ci .
Reply to D} (C) queries as follows:

je—j+1;M—Dg(C)
Sequencing of If j >1or C 75 Cj then phase —1
received ciphertexts If M #.1 and phase = 1 then return 1
If M §é_L then Asfctxt <=1
Else Agtcixt <= 0
Until Agfeixt halts

Return 0

Authenticity when decryption is stateful UF

FLORIDA

[Bellare, Kohno,
Namprempre '03]: First to capture security against replay, out of order delivery, etc.

Experiment ExpZgsfetxt(4 . 1)

K&K o Channel is initially “in sync”
t<—0;7«<0; phase — 0

ctxt

Reply to Ex (M) queries as follows:

. . R
Sequencing of / i i+ 1; G = Ex(Mp)

sent ciphertexts Astetxt <= Cj

Reply to D} (C) queries as follows: Channel is “out of sync”,

relative to what has been sent.

/vj<—j+1;M<—DK(C) ~— GAME ON!
Sequencing of Ifj >iorC ;é C] then phase —1
received ciphertexts If M #.1 and phase = 1 then return 1

If M §é_L then Asfctxt <=1
Else Agteixt <= 0

Until Agfeixt halts

Return 0

Authenticity when decryption is stateful UF

FLORIDA

[Bellare, Kohno,
Namprempre '03]: First to capture security against replay, out of order delivery, etc.

Experiment ExpZgsfetxt(4 . 1)

K&K o Channel is initially “in sync”
t<—0;7«<0; phase — 0

ctxt

Reply to Ex (M) queries as follows:

. . R
Sequencing of / i i+ 1; G = Ex(Mp)

sent ciphertexts Astetxt <= Cj

Reply to D} (C) queries as follows: Channel is “out of sync”,

relative to what has been sent.

/'j‘_j+1;M‘_DK(C) +— GAME ON!
Sequencing of If 5 > i or C # Cj then phase « 1
received ciphertexts If M #.1 and phase = 1 then return 1
If M §é_L then Asfctxt <=1
Else Agteixt <= 0 \
Until Asgetx; halts Adversary delivered out-of-sync
Return 0 ctxts and decryption failed to catch it!
WIN!

“"Atomic message” semantics

b cees Loy VL4)M
%ﬁ »Send \@
=

A secure channel should provide:

Privacy for messages
Integrity protection for the transmission
Protection against out-of-order delivery and replay

So far, all of our security notions assume “atomic messages”:
Sender submits one message M; and this maps to one transmitted ciphertext C;

Implicitly, the sender is guaranteed that the basic “protected unit” is a message.

1. The application may pass in arbitrary length data, but an RFC-compliant
implementation of the TLS secure channel may fragment however it likes,
so long as fragments are at most 2”14 bytes long.

2. TLS records embellished with a sequence number (SQN), to protect against
out-of-order delivery (which includes replay, fragment dropping)

If encryption is CBC mode, the SQN is not sent.
If encryption is AEAD the SQN may or may not be sent.

Fragmentation and streams

Real protocols and network behaviors cause fragmentation:

One message M; mapping to an unknown number
of transmitted ciphertexts Ci,z Ci, 5 wee [Boldyreva, Degabriele, Paterson, Stam EC’12]

Fragmentation and streams UF

FLORIDA

Real protocols (e.g. TLS) and network behaviors cause fragmentation:

One message M; mapping to an unknown number
of transmitted ciphertexts Ci,z Ci, 5 wee [Boldyreva, Degabriele, Paterson, Stam EC’12]
What’s more, TLS v1.2 says...

“Client message boundaries are not preserved in the record layer (i.e., multiple client
messages of the same ContentType MAY be coalesced into a single TLSPlaintext record...)"

Thus from the application’s perspective, security guarantees are
assumed for the entire stream of data provided to the TLS record layer.

Stream semantics, not message semantics.

FLORIDA

Fragmentation and streams UF

Real protocols (e.g. TLS) and network behaviors cause fragmentation:

One message M; mapping to an unknown number
of transmitted ciphertexts Ci,1 Ci, 5 wee [Boldyreva, Degabriele, Paterson, Stam EC’12]

What’s more, TLS v1.2 says...

“Client message boundaries are not preserved in the record layer (i.e., multiple client
messages of the same ContentType MAY be coalesced into a single TLSPlaintext record...)"

Thus from the application’s perspective, security guarantees are
assumed for the entire stream of data provided to the TLS record layer.

Stream semantics, not message semantics.

..this is reflected in secure channel implementations, e.g. OpenSSL’s API:

EVP EncryptInit(&ctx, EVP aes 256 cbc(), key, 1iv)
EVP EncryptUpdate(&ctx, out, &outlenl, in, sizeof(in))

EVP_ EncryptFinal (&ctx, out + outlenl, &outlen2)

[FGMP] Stream-based Channels UF

FLORIDA

Definition 3.1 (Syntax of stream-based channels). A stream-based channel Ch = (Init,Send, Recv) with
associated sending and receiving state space Sg resp. Sr and error space £, where EN{0,1}* =0, consists
of three efficient algorithms:

e Init. On input a security parameter 1*, this probabilistic algorithm outputs initial states stgo € Sg,
stro € Sg for the sender and the receiver, respectively. We write (stgg,Str) s Init(1%).

Init: models initialization of the channel, producing sender- and receiver-side state
(think: keys, counters, buffers, etc.)

[FGMP] Stream-based Channels UF

FLORIDA

Definition 3.1 (Syntax of stream-based channels). A stream-based channel Ch = (Init,Send, Recv) with
associated sending and receiving state space Sg resp. Sr and error space £, where EN{0,1}* =0, consists
of three efficient algorithms:

e Send. On input a state stg € Sg, a message fragment m € {0,1}*, and a flush flag f € {0,1},
this (possibly) probabilistic algorithm outputs an updated state sty € Sg and a ciphertext fragment
c € {0,1}*. We write (stl, c) <5 Send(stg, m, f).

Init: models initialization of the channel, producing sender- and receiver-side state
(think: keys, counters, buffers, etc.)

Send: models stateful/randomized transformation of message fragments into
(possibly empty) ciphertext fragments. Updates state (e.g. counters, buffers)
and observes a “flush” signal.

[FGMP] Stream-based Channels UF

FLORIDA

Definition 3.1 (Syntax of stream-based channels). A stream-based channel Ch = (Init,Send, Recv) with
associated sending and receiving state space Sg resp. Sr and error space £, where EN{0,1}* =0, consists
of three efficient algorithms:

e Recv. On input a state stg € Sg and a ciphertext fragment c € {0,1}*, this deterministic algorithm
outputs an updated state st € Sr and a message fragment m € ({0,1} U E)*. We write (sty, m)
Recv(stg, c).

Init: models initialization of the channel, producing sender- and receiver-side state
(think: keys, counters, buffers, etc.)

Send: models stateful/randomized transformation of message fragments into
(possibly empty) ciphertext fragments. Updates state (e.g. counters, buffers)
and observes a “flush” signal.

Recv: models stateful transformation of ciphertext fragments into (possibly empty)
message fragments or error symbols. Updates state (e.g. counters, buffers).

Realism* |

Stream-based secure channels
[Fischlin, Gunther, Marson, and Paterson ’15)]

AE with ctxt fragmentation

and multiple error msg.
[Boldyreva, Degabriele, Paterson, Stam ’12]

AE with
stateful decryption

[Bellare, Kohno, Namprempre ’03]

Basic AE

[Bellare, Namprempre '00]
[Namprempre, Rogaway, S. ‘14]

»

Definitional
complexity*

*A completely subjective measure, don't take
this too literally...

Integrity of streams [FGMP (full version)]

ExplT (1)
1 (sts,str) s Init(1%)
2 sync <1

3 win < 0
4
6

Ms,Cs <€, Mr,Cr < €
AOSend('s'))oRecv(')(lk)

return win

Integrity of streams [FGMP (full version)] UF

FLORIDA

Bt (1)

1 (sts,str) <s Init(1*)

2 sync < 1

3 win <0

4 Mg,Cs €, Mr,Cr < ¢
5 AOSend('1')v0Recv(')(1’\)

6 return win

If A queries Osendg(m, f):

7 (sts,c) s Send(sts, m, f) append message fragment to

8 Mg < Mg || M <« sender-side message stream
9 Cs Cs ” C

10 return ¢ to A append ciphertext fragment to
sender-side ciphertext stream

Integrity of streams [FGMP (full version)] UF

FLORIDA

If A queries ORecv(c):
16 if sync = 0 then)/ already out-of-sync

Exptgy, 2™ (1%): 17 (stg,m) < Recv(stg,c)

1 (sts,str) s Init(1*) 15 if m ¢ £ then win « 1

2 sync <1 . 11 &

5 win < 0 19 else if Cr || ¢ X Cs then / still in-sync
4 Ms,Cs <&, Mp,CRr ¢ 20 (stgr,m) < Recv(stg,c)

5 AoSend(':')yoRecv(')(l’\) 21 CR $— CR || C

6 return win 25 else

23 if Cr < [C'R || c, Cs] then

If A queries Osena(m, f): /| ¢ deviates or exceeds, contains genuine part

7 (sts,c) <—s Send(sts,m, f)

s Mg « Mg ||m 24 E;\(’—[CR || C,Cs]%CR
9 Cs+Cs | c 25 stp < str
10 return c to A 26 (sft\;{, ffﬁ) — Recv(sﬁ;\ﬁ’a
27 (str, m) < Recv(str,c)
28 m’ < m % [m,m]
29 else // c deviates or exceeds, contains no genuine part
30 (str,m’) + Recv(str,c)
31 m < m/

32 if Cs £ Cr || cor m' # € then
/| deviation, or exceeding portion produces output
33 sync < 0
34 Cr < Cr || c
35 if m’' ¢ £ then win + 1
36 return m to A

Intuition for stateful “atomic” AE [BKN]:

“If the receiver detects an out-of-sync ciphertext, throw an error!”

Intuition for stateful “atomic” AE [BKN]:

“If the receiver detects an out-of-sync ciphertext, throw an error!”

Intuition for stream-based setting [FGMP]:

“WHEN the receiver detects an out-of-sync ciphertext, throw an error!”

Why the distinction?

Intuition for stateful “atomic” AE [BKN]:

“If the receiver detects an out-of-sync ciphertext, throw an error!”

Intuition for stream-based setting [FGMP]:

')7

“WHEN the receiver detects an out-of-sync ciphertext, throw an error!

Why the distinction?

1. Fragmentation! Even under honest operation, protocol and network may fragment

Intuition for stateful “atomic” AE [BKN]:

“If the receiver detects an out-of-sync ciphertext, throw an error!”

Intuition for stream-based setting [FGMP]:

'77

“WHEN the receiver detects an out-of-sync ciphertext, throw an error!

Why the distinction?

1. Fragmentation! Even under honest operation, protocol and network may fragment

2. Fragmentation! Adversary controls the network, and can refragment, reorder, etc.

Receiver may have to accept many adversarially delivered ciphertext fragments
before it can actually determine that the honest ciphertext stream is out-of-sync

The full version of [FGMP] is a lovely paper.

Go read it.

What is a “partially specified
secure channel”?!

Real specification documents, again...

Real secure channel specifications are full of MUSTs, MUST NOTs,
SHOULDs, SHOULD NOTs, and MAYs (61 of them in TLS v 1.2)

MUST = absolute requirement
SHOULD = recommended, but there are valid reasons you might decide not to do this
MAY = optional

Whenever an implementation encounters a condition which is defined as a fatal alert,
it MUST send the appropriate alert prior to closing the connection. For all errors
where an alert level is not explicitly specified, the sending party MAY determine

atits discretion whether to treat this as a fatal error or not.

Real specification documents, again... UF

FLORIDA

Real secure channel specifications are full of MUSTs, MUST NOTs,
SHOULDs, SHOULD NOTs, and MAYs (61 of them in TLS v 1.2)

MUST = absolute requirement
SHOULD = recommended, but there are valid reasons you might decide not to do this
MAY = optional

Whenever an implementation encounters a condition which is defined as a fatal alert,
it MUST send the appropriate alert prior to closing the connection. For all errors
where an alert level is not explicitly specified, the sending party MAY determine

atits discretion whether to treat this as a fatal error or not.

Real secure channel specifications are vague or silent on many important
implementation details

“Client message boundaries are not preserved in the record layer (i.e., multiple client
messages of the same ContentType MAY be coalesced into a single TLSPlaintext record...)"

/LNO mention of how

Words of caution, in search of a formal solution

“Because of all this complexity, we would claim that nobody has ever
proven the cryptographic security of something like the “full” TLS 1.2;
instead, one extracts some piece and goes from there”

“Abstraction is what we do. But, at another level, [...] if you prove
something about the (self-identified) cryptographic core of an
authentication protocol, does this actually prove anything about the
full-fledged scheme? An approach in which security-relevant features
of real-world protocols are routinely elided in corresponding analyses
ought to raise foundational concerns.”

Authentication without Elision:

Partially Specified Protocols, Associated Data,

and Cryptographic Models Described by Code
(Rogaway and Stegers, CSF’09)

“Specifications” = families of implementations bt

DA

The Transport Layer Security (TLS) Protocol O p en S S L

Version 1.2

Status of This Memo WOlfSSL

This document specifies an Internet standards track protocol for the

Internet community, and requests discussion and suggestions for G TLS
improvements. Please refer to the current edition of the "Internet nu

Official Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited. WinSSL

Abstract

This document specifies Version 1.2 of the Transport Layer Security DarWiHSSL

(TLS) protocol. The TLS protocol provides communications security
over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery. / BOtan

Table of Contents

1. INtXOAUCEION vevuveneneeneesensensesensesensesessessnsensesnnsnssd / POlarSSL

1l.1. Requirements Terminology ceeeeeeececeeceesseesccesocnscnnnns
1.2. Major Differences from TLS 1.1 .uiveeeescesscasocasocnscnnnns
B € T T B
Goals Of ThisS DOCUMENt «uveeeeeeereeeceeacnescensecsscasoncsnnnss
. Presentation LANgUAgE ..eeeseeesessscssccssossssssossasessscssnnss
4.1. BasiC BlOCK S1iZ€ tvieeeeeecscscsesossssossssssssssassssssnnsas
4.2, MIiSCELllaAnNEOUS «oeesesescscacssssesesoscsssssassssscsscssssnssas
4.3, VECLOXS .ieecscectscccesscccscnsocsssssssssccssoscscnsoossoe
4.4. NUMDEIXS +eveeeeecoesoosesossssoscsssesossssasssssesassssascssnssnns
. Enumeratedsiciieieiietiettettetttsccsccscctsccsccscnseaasd

> Jw N

IO |00 o [N [N [N oy U i

>
(&)

>
[}

. Constructed TYPES ceeeececcececncns csessssssssesssessssee ..10 .
4.6.1. VATiaNtS toveeeennnnnnnnnnnssseeceeesssesassnnnnnnssll (GltHub)
Cryptographic Attributesceiieeeeenecneecneccnnceeaaedl2 b

>
~

bl

Basic idea of the “partially specified X" viewpoint

Real world
specification

Partial specification of things that
absolutely must be defined, implemented,
verified correct

+

a collection of optional behaviors,
unspecified details

Partially Specified Channels UF

FLORIDA

[FGMP] left open the extention of stream-based channels to the
multiplexed-stream setting, something explicit in TLS v1.3 and useful in practice.

A partially specified channel (PSC) with support for multiplexing is a 5-tuple

|nit0 intializes state for Mux, Write, Read, Demux

Mux O the stateful multiplexing algorithm takes as input a pl.ain text fragment M,
stream context sc, and returns a channel fragment X, its context H, and
some auxiliary output o
M Send

WriteO the stateful channel-writing algorithm takes a channel fragment X,
context H , and auxiliary information a, and produces a ciphertext
fragment C and a status message y

0 Thestateful channel-reading algorithm takes a ciphertext fragment C, and
Read returns a ciphertext fragment Y, its context H, and auxiliary output .

Recv

DemuxO The stateful demultiple.x-ing a.lgorithn‘{ takes a ciphertext fragment Y with
channel context H, auxiliary information o, and returns a plaintext
fragment M with stream context sc, along with a status messagey .

Partially Specified Channels UF

FLORIDA

What’s with the oracle? It handles all of the things that are not explicitly specified

by the implementation of the named algorithm. . .
Specification details” oracle

|nit0 intializes state for Mux, Write, Read, Demux

Mux O the stateful multiplexing algorithm takes as input a pl.ain text fragment M,
stream context sc, and returns a channel fragment X, its context H, and

some auxiliary output o Send

WriteO the stateful channel-writing algorithm takes a channel fragment X,
context H , and auxiliary information a, and produces a ciphertext
fragment C and a status message y

0 Thestateful channel-reading algorithm takes a ciphertext fragment C, and
Read returns a ciphertext fragment Y, its context H, and auxiliary output .

Recv

O The stateful demultiplexing algorithm takes a ciphertext fragment Y with
channel context H, auxiliary information o, and returns a plaintext
fragment M with stream context sc, along with a status messagey .

Demux

Fully Specified Channels UF

FLORIDA

A PSC becomes a “fully specified channel” once you fix the behavior of the
specification details oracle.

|nit0 intializes state for Mux, Write, Read, Demux

Mux O the stateful multiplexing algorithm takes as input a pl.ain text fragment M,
stream context sc, and returns a channel fragment X, its context H, and

some auxiliary output o Send

WriteO the stateful channel-writing algorithm takes a channel fragment X,
context H , and auxiliary information a, and produces a ciphertext
fragment C and a status message y

0 Thestateful channel-reading algorithm takes a ciphertext fragment C, and
Read returns a ciphertext fragment Y, its context H, and auxiliary output .

Recv

O The stateful demultiplexing algorithm takes a ciphertext fragment Y with
channel context H, auxiliary information o, and returns a plaintext
fragment M with stream context sc, along with a status messagey .

Demux

Adversarial Fully Specified Channels UF

Here’s the cool part:

FLORIDA

In the security notions, the adversary plays it’s game as usual,
but whenever a SD-oracle call is made, the adversary services it.

Expy (A
declare str S, bool sync, win
(Mu, Wr, Re, De) «— Init()
sync « 1; ASend.Recv

return win

Send (M, sc)
(X, H, @) «— Mux? (M, sc, var Mu)
(C,y) « Write (X, H, a, var Wr)
S«S|C
return (C, y)

Recv(C)
(Y, H, @) «— Read” (C, var Re)
(M, sc, y) « Demux?(Y, H, a, var De)
if syncand Y < Sthen S « S%Y

else sync « 0
win &« winV (M # L Asc# 1)
return (M, sc, y)

ux

Send

Write

Read

)
%l\lﬁ
]

Recv

Security proof means, loosely,
“secure in the presence of worst-case
implementation of specification details”

We use the PSC viewpoint to capture and analyze the TLS v 1.3 record layer as-is,
and not some imagined realization of it.

For a PSC: integrity of ciphertext streams does not imply integrity of plaintext streams.

You can'’t define correctness in a satisfying way until you fully specify.

(Correctness for a real protocol
might be very hard to prove!)

For a FSC: integrity of ciphertext streams does integrity of plaintext streams.

Many other things! Seems like a very powerful and useful viewpoint.

(Partially Specified) Secure Channels

Tom Shrimpton
University of Florida

Summer School on Real World Crypto and Privacy (June 14, 2018)

